Room 2056
Inselplatz 5
07743 Jena
DAFNE: Discretisation and numerical analysis of fully nonlinear equations
Our project DAFNE deals with the numerical analysis of fully nonlinear PDEs, as Hamilton-Jacobi-Bellman equations, the Monge-Ampère equation or optimal transport, by the finite element method.
The topic of DAFNE is the theoretical and practical foundation of FEM and automatic mesh-refinement algorithms for fully nonlinear equations. We analyze a large class of Hamilton-Jacobi-Bellman (HJB) equations. They comprise many classical and relevant equations like Pucci’s equation or the Monge-Ampère equation with applications in finance, optimal transport, physics, and geometry.
Events
- Summer school on Numerical Analysis of Nonlinear PDEs External link (Leipzig, 19.-21.07.2023)
- Jena-Augsburg-Meeting on Numerical Analysis (Augsburg, 07.-10.06.2023)
- Finite Element Workshop (Jena, March 20 - 22, 2023)
- Workshop: Numerical analysis of nonlinear and multiscale problems (Jena, July 27 - 29, 2022)
Publications
Preprints
- D. Gallistl and S. Tian.
A posteriori error estimates for nonconforming discretizations of singularly perturbed biharmonic operatorsExternal link, arxiv:2310.15665 (2023). - N. T. Tran.
Discrete weak duality of hybrid high-order methods for convex minimization problemsExternal link, arXiv:2308.03223 (2023) - D. Gallistl and R. Maier.
Localized implicit time stepping for the wave equationExternal link, arxiv:2306.17056 (2023) - L. Diening, L. Gehring, J. Storn.
Adaptive mesh refinement for arbitraryExternal link
initial triangulationsExternal link, arxiv:2306.02674 (2023) - N. T. Tran.
Finite element approximation for uniformly elliptic linear PDE of second order inExternal link
nondivergence formExternal link, arxiv.org:2302.04202 (2023) - D. Gallistl and N. T. Tran.
Stability and guaranteed error control of approximations to theExternal link
Monge–Ampère equationExternal link, arXiv:2301.06805 (2023) - L. Gehring.
A Strengthened Alexandrov Maximum Principle or Uniform Hölder Continuity for Solutions of the Monge‒Ampère Equation with Bounded Right-Hand SideExternal link, arXiv:2211.01175 (2022) - D. Gallistl and S. Tian.
Continuous finite elements satisfying a strong discrete Miranda–Talenti identityExternal link arxiv:2209.12500 (2022)
Peer-reviewed works
- F. Bertrand, C. Carstensen, B. Gräßle, and N. T. Tran.
Stabilization-free HHO a posteriori error controlExternal link, Numer. Math 154, pp.369–408 (2023) - D. Gallistl and N. T. Tran.
Stability and guaranteed error control of approximations to the Monge–Ampère equationExternal link, Numer. Math., (2023) (In press) - P. Freese, D. Gallistl, D. Peterseim and T. Sprekeler.
Computational multiscale methods for nondivergence-form elliptic partial differential equationsExternal link, Comput. Methods Appl. Math. (2023) (published online) - D. Gallistl.
Mixed methods and lower eigenvalue boundsExternal link, Math. Comp., volume 92, no.342, pp.1491–1509 (2023) - D. Gallistl and N. T. Tran.
Convergence of a regularized finite element discretization of the two-dimensional Monge–Ampère equationExternal link, Math. Comp., volume 92, no.342, pp.1467–1490 (2023) - D. Gallistl and V. Olkhovskiy.
Computational lower bounds of the Maxwell eigenvaluesExternal link, SIAM J. Numer. Anal., volume 61, no.2, pp.539–561 (2023) - D. Brown and D. Gallistl.
Multiscale sub-grid correction method for time-harmonic high-frequency elastodynamics with wave number explicit boundsExternal link, Comput. Methods Appl. Math., volume 23, no.1, pp.65–82 (2023) - K. Liu, D. Gallistl, M. Schlottbom and J. J. W. van der Vegt.
Analysis of a mixed discontinuous Galerkin method for the time-harmonic Maxwell equations with minimal smoothness requirementsExternal link, IMA J. Numer. Anal., volume 43, no.4, pp.2320–2351 (2023)
Talks
Ngoc Tien Tran
- Unstabilized hybrid high-order method for a class of degenerate convex minimization problems, CC2LX Workshop on Finite Element Methods and Adaptivity, Wien, 31.03.2022
- A hybrid high-order method for guaranteed lower eigenvalue bounds,
WAND, Salzburg, 15.07.2022 - Convergent adaptive hybrid higher-order schemes for convex minimization,
NA-LaB, Berlin, 22.07.2022 - Convergence of a regularized FE discretization of the 2D Monge–Ampère equation,
GAMM 2022, Aachen, 16.08.2022 - A finite element method for uniformly elliptic linear PDE of second order in nondivergence form, Berlin Workshop on Numerical Analysis 2022, Berlin, 08.11.2022
- A regularized scheme for the Monge–Ampère equation,
Finite Element Workshop, Jena, 20.03.2023 - Minimal residual method for linear PDE of second order in nondivergence form,
Finite element fair 2023, 13.05.2023 - A regularized scheme for the Monge–Ampère equation,
Saale-Elster-Colloquium (SEC), Halle, 25.05.2023 - Finite element approximation for second order linear PDE in nondivergence form,
GAMM 2023, Dresden, 01.06.2023 - Error analysis of a skeletal method for convex minimization problems using duality relations, Jena-Augsburg-Meeting (JAM) on Numerical Analysis, 09.06.2023
- Adaptive hybrid high-order method for guaranteed lower eigenvalue bounds,
29th Biennial Conference on Numerical Analysis, Glasgow, 28.06.2023 - Minimal residual methods for uniformly elliptic PDE of second order in nondivergence form, DMV-Jahrestagung 2023, Ilmenau, 27.09.2023
Dietmar Gallistl
- Adaptive discretization of HJB equations with Cordes coefficients,
Oberwolfach Workshop 2126b “Numerical Methods for Fully Nonlinear and Related PDEs”, 27.6.–3.7.2021 (online) - Adaptive discretization of HJB equations with Cordes coefficients (invited plenary),
Chemnitz Finite Element Symposium 2021, Chemnitz, 06.-08.09.2021 - Computational lower bounds of the Maxwell eigenvalues,
GAMM Workshop Numerische Analysis 2021, Hannover, 27.-28.09.2021 - A posteriori error analysis of the inf-sup constant for the divergence,
BI.discrete21, Bielefeld, 29.09.-01.10.2021 - Rayleigh–Ritz approximation of the inf-sup constant for the divergence, PDE & Scientific Computing Seminar, National University of Singapore, 15.10.2021 (online)
- Rayleigh–Ritz approximation of the inf-sup constant for the divergence,
Numerical Analysis Seminar, The University of Hong Kong, 16.2.2022 (online) - On the usefulness of mixed methods for eigenvalue computation,
CC2LX - Workshop on Finite Element Methods and Adaptivity, TU Wien, 31.3.–1.4.2022 - Convergence of a regularized finite element discretization of the two-dimensional Monge–Ampère equation, Equadiff 15, 11.-15.7.2022, Brno, Czech Republic
- Mixed methods and lower eigenvalue bounds,
GAMM-Jahrestagung, Aachen, 15.-19.08.2022 - Convergence of a regularized finite element discretization of the two-dimensional Monge–Ampère equation, International Conference on Computational Partial Differential Equations and Applications (ICCPDEA-2022) 6.–8.9.2022, BML Munjal University, India (online)
- Convergence of a regularized finite element discretization of the two-dimensional Monge–Ampère equation, DMV-Jahrestagung, Berlin, 12.-16.09.2022
- Computational lower bounds of the Maxwell eigenvalues,
Berlin Workshop on Numerical Analysis, Berlin, 07.11.2022 - Mixed methods and lower eigenvalue bounds,
The 20th European Finite Element Fair, U Twente, NL, 12.-13.05.2023 - A posteriori error analysis of the inf-sup constant for the divergence,
GAMM-Jahrestagung, Dresden, 30.05.-02.06.2023 - A posteriori error control in the max morm for the Monge-Ampère equation,
DMV-Jahrestagung, Ilmenau, 25.-28.09.2023
Emilie Pirch
- Comparison of guaranteed lower eigenvalue bounds with three skeletal methods, International Conference on Spectral and High Order Methods (ICOSAHOM), Seoul, 14.-18.08.2023
- Comparison of guaranteed lower eigenvalue bounds with three skeletal methods, 10th International Congress on Industrial and Applied Mathematics (ICIAM), Tokio, 20.-25.08.2023
- Numerical experiments with three skeletal methods, Numerical methods for spectral problems: theory and applications (NMSP) 2023, Kushiro, Hokkaido, Japan, 26-31.08.2023
Lukas Gehring
- Initial refinement is unnecessary for #Simplices <~ #Initial + #Marked in any dimension. SIAM International Meshing Roundtable (IMR), Amsterdam, 8.3.2023
- A lower bound for the constant in the theorem of Binev‒Dahmen‒DeVore‒Stevenson, CMAM Conference, Wien, 1.9.2022
- Initial refinement is unnecessary for #Simplices <~ #Initial + #Marked in any dimension. CC2LX - Workshop on Finite Element Methods and Adaptivity, TU Wien, 1.4.2022
-
Gallistl, Dietmar, Univ.-Prof. Dr PI Professorship of Numerical Analysis
-
Gehring, Lukas PhD student Professorship of Numerical Analysis
Room 2058
Inselplatz 5
07743 Jena -
Mousavi, Amireh, Dr Postdoc Professorship of Numerical Analysis
Room 2058
Inselplatz 5
07743 Jena -
Pirch, Emilie PhD student Professorship of Numerical Analysis
Room 2053
Inselplatz 5
07743 Jena