Dr. Ngoc Tien Tran
Wissenschaftlicher Mitarbeiter
Ngoc Tien Tran, Dr.
Professur für Numerische Mathematik
Raum 3343
Ernst-Abbe-Platz 2
07743 Jena
Forschungsschwerpunkte
- Numerik voll-nichtlinearer PDEs
- Skelettmethoden
Lehre
Übersicht aktueller Lehrveranstaltungen in FriedolinExterner Link
- WS 22/23 Vorlesung: Die Monge-Ampère-Gleichung
- SS 22 Seminar Numerische Mathematik
Publikationen
Preprints
- N.T. Tran. Finite element approximation for uniformly elliptic linear PDE of second order in
nondivergence form, arXiv (2023) - D. Gallistl and N. T. Tran. Stability and guaranteed error control of approximations to the
Monge–Ampère equation, 1–18, arXiv:2301.06805 (2023) - C. Carstensen, B. Gräßle, and N. T. Tran. Adaptive hybrid high-order method for guaranteed
lower eigenvalue bounds, 1–25, eingereicht (2022) - F. Bertrand, C. Carstensen, B. Gräßle, and N. T. Tran. Stabilization-free HHO a posteriori error
control, 1–38, arXiv:2207.01038v1 (2022)
Begutachtete Arbeiten
- D. Gallistl and N. T. Tran. Convergence of a regularized finite element discretization
of the two-dimensional Monge-Ampère equation. Math. Comp. (online) (2023), 1–22,
doi:10.1090/mcom/3794 - P. Bringmann, C. Carstensen, and N. T. Tran. Adaptive least-squares, discontinuous Petrov-
Galerkin, and hybrid high-order methods. Lect. Notes Appl. Comput. Mech. 98, Springer
(2022), 107–147 - C. Carstensen and N. T. Tran. Convergent adaptive hybrid higher-order schemes for convex
minimization. Numer. Math. 151 (2022), no. 2, 329–367 - C. Carstensen and N. T. Tran. Unstabilized hybrid high-order method for a class of degenerate
convex minimization problems. SIAM J. Numer. Anal. 59 (2021), no. 3, 1348–1373
Abschlussarbeiten
- N. T. Tran. Unstabilized hybrid high-order method for a class of degenerate convex minimization problems, Humboldt-Universität zu Berlin (2021)
- N. T. Tran. Non-standard discretisation of a class of degenerate convex minimisation problems, Humboldt-Universität zu Berlin (2018)
- N. T. Tran. Least-Squares Finite-Elemente-Methode für die Stokes-Gleichungen in 3D, Bachelor Thesis, Humboldt-Universität zu Berlin (2016)