Dr. Ngoc Tien Tran

Wissenschaftlicher Mitarbeiter
Ngoc Tien Tran, Dr.
Professur für Numerische Mathematik
Raum 3343
Ernst-Abbe-Platz 2
07743 Jena

Forschungsschwerpunkte

  • Numerik voll-nichtlinearer PDEs
  • Skelettmethoden

Lehre

Übersicht aktueller Lehrveranstaltungen in FriedolinExterner Link

  • WS 22/23 Vorlesung: Die Monge-Ampère-Gleichung
  • SS 22 Seminar Numerische Mathematik

Publikationen

Preprints

  1. N.T. Tran. Finite element approximation for uniformly elliptic linear PDE of second order in
    nondivergence form, arXiv (2023)
  2. D. Gallistl and N. T. Tran. Stability and guaranteed error control of approximations to the
    Monge–Ampère equation, 1–18, arXiv:2301.06805 (2023)
  3. C. Carstensen, B. Gräßle, and N. T. Tran. Adaptive hybrid high-order method for guaranteed
    lower eigenvalue bounds, 1–25, eingereicht (2022)
  4. F. Bertrand, C. Carstensen, B. Gräßle, and N. T. Tran. Stabilization-free HHO a posteriori error
    control, 1–38, arXiv:2207.01038v1 (2022)

Begutachtete Arbeiten

  1. D. Gallistl and N. T. Tran. Convergence of a regularized finite element discretization
    of the two-dimensional Monge-Ampère equation. Math. Comp. (online) (2023), 1–22,
    doi:10.1090/mcom/3794
  2. P. Bringmann, C. Carstensen, and N. T. Tran. Adaptive least-squares, discontinuous Petrov-
    Galerkin, and hybrid high-order methods. Lect. Notes Appl. Comput. Mech. 98, Springer
    (2022), 107–147
  3. C. Carstensen and N. T. Tran. Convergent adaptive hybrid higher-order schemes for convex
    minimization. Numer. Math. 151 (2022), no. 2, 329–367
  4. C. Carstensen and N. T. Tran. Unstabilized hybrid high-order method for a class of degenerate
    convex minimization problems. SIAM J. Numer. Anal. 59 (2021), no. 3, 1348–1373

Abschlussarbeiten

  1. N. T. Tran. Unstabilized hybrid high-order method for a class of degenerate convex minimization problems, Humboldt-Universität zu Berlin (2021)
  2. N. T. Tran. Non-standard discretisation of a class of degenerate convex minimisation problems, Humboldt-Universität zu Berlin (2018)
  3. N. T. Tran. Least-Squares Finite-Elemente-Methode für die Stokes-Gleichungen in 3D, Bachelor Thesis, Humboldt-Universität zu Berlin (2016)