Roland Maier

Jun.-Prof. Dr. Roland Maier

Juniorprofessor für Numerische Mathematik
Roland Maier
Foto: Jürgen Scheere (Universität Jena)
Roland Maier, Juniorprof. Dr.
Juniorprofessur Numerische Mathematik
Raum 3301
Ernst-Abbe-Platz 2
07743 Jena

Kommende Veranstaltungen

 

Forschungsschwerpunkte

  • Multiskalenmethoden
  • Numerische Homogenisierung
  • Semi-explizite Verfahren für gekoppelte PDEs
  • Diskretisierung von (zeitabhängigen) PDEs

 

Lehre

 

Kurzer Lebenslauf

  • seit OKT 2021: Juniorprofessor für Numerische Mathematik, Friedrich-Schiller-Universität Jena
  • SEP 2020 - SEP 2021: PostDoc, Chalmers University of Technology und Universität Göteborg, Schweden
  • APR 2020 - AUG 2020: PostDoc, Universität Augsburg
  • APR 2017 - MRZ 2020: Doktorand, Universität Augsburg
  • SEP 2012 - MRZ 2017: Bachelor- und Masterstudium, Universität Bonn

 

Preise und Auszeichnungen

  • Gewinner der ECCOMAS PhD Olympiade 2021
  • Dr.-Klaus-Körper-Preis der GAMM 2021
  • Kulturpreis Bayern 2020, Dissertationspreis
  • Ernanntes Mitglied der GAMM Juniors (2020-2022)

 

Publikationen

Eingereichte Arbeiten

  1. Z. Dong, M. Hauck, and R. Maier. An improved high-order method for elliptic multiscale problemsArXiv Preprint, 2022.
  2. F. Kröpfl, R. Maier, and D. Peterseim. Neural network approximation of coarse-scale surrogates in numerical homogenization. ArXiv Preprint, 2022.
  3. R. Altmann, R. Maier, and B. Unger. Semi-explicit integration of second order for weakly coupled poroelasticity. ArXiv Preprint, 2022.

Begutachtete Arbeiten

  1. R. Maier, P. Morgenstern, and T. Takacs. Adaptive refinement for unstructured T-splines with linear complexity. Comput. Aided Geom. Design, 96:102117, 2022.
  2. F. Kröpfl, R. Maier, and D. Peterseim. Operator compression with deep neural networks. Adv. Cont. Discr. Mod., 2022, Paper No. 29, 2022.
  3. P. Ljung, R. Maier, and A. Målqvist. A space-time multiscale method for parabolic problems. SIAM Multiscale Model. Simul., 20(2):714-740, 2022.
  4. R. Maier and B. Verfürth. Multiscale scattering in nonlinear Kerr-type media. Math. Comp., 91(336):1655-1685, 2022.
  5. R. Altmann and R. Maier. A decoupling and linearizing discretization for weakly coupled poroelasticity with nonlinear permeability. SIAM J. Sci. Comput., 44(3):B457-B478, 2022.
  6. S. Geevers and R. Maier. Fast mass lumped multiscale wave propagation modelling. Accepted for publication in IMA J. Numer. Anal., 2021.
  7. R. Maier. A high-order approach to elliptic multiscale problems with general unstructured coefficients. SIAM J. Numer. Anal., 59(2):1067-1089, 2021.
  8. R. Altmann, R. Maier, and B. Unger. Semi-explicit discretization schemes for weakly-coupled elliptic-parabolic problems. Math. Comp., 90(329):1089-1118, 2021.
  9. A. Caiazzo, R. Maier, and D. Peterseim. Reconstruction of quasi-local numerical effective models from low-resolution measurements. J. Sci. Comput., 85(1), Article No. 10, 2020.
  10. R. Altmann, E. Chung, R. Maier, D. Peterseim, and S.-M. Pun. Computational multiscale methods for linear heterogeneous poroelasticity. J. Comput. Math., 38(1):41-57, 2020.
  11. P. Hennig, R. Maier, D. Peterseim, D. Schillinger, B. Verfürth, and M. Kästner. A diffuse modeling approach for embedded interfaces in linear elasticity. GAMM-Mitteilungen, 43(1):e202000001, 2020.
  12. S. Fu, R. Altmann, E. Chung, R. Maier, D. Peterseim, and S.-M. Pun. Computational multiscale methods for linear poroelasticity with high contrast. J. Comput. Phys., 395:286-297, 2019.
  13. R. Maier and D. Peterseim. Explicit computational wave propagation in micro-heterogeneous media. BIT Numer. Math., 59(2):443-462, 2019.
  14. C. Paulus, R. Maier, D. Peterseim, and S. Cotin. An immersed boundary method for detail-preserving soft tissue simulation from medical images. In: P. Nielsen, A. Wittek, K. Miller, B. Doyle, G. Joldes, and M. Nash, editors, Computational Biomechanics for Medicine, MICCAI 2017, pp. 55-67. Springer, Cham, 2019.

Beiträge in Sammelbänden

  1. P. Hennig, M. Kästner, R. Maier, P. Morgenstern, and D. Peterseim. Adaptive isogeometric phase-field modeling of weak and strong discontinuities. In: J. Schröder and P. Wriggers, editors, Non-standard Discretisation Methods in Solid Mechanics, volume 98 of Lecture Notes in Applied and Computational Mechanics, pp. 243-282. Springer, Cham, 2022.

Beiträge in Proceedings

  1. R. Altmann, R. Maier, and B. Unger. A semi-explicit integration scheme for weakly-coupled poroelasticity with nonlinear permeability. Proc. Appl. Math. Mech., 20(1):e202000061, 2021.
  2. A. Caiazzo, R. Maier, and D. Peterseim. Reconstruction of quasi-local numerical effective models from low-resolution measurements. Oberwolfach Reports, 16(3):2149-2152, 2019.
  3. R. Maier and D. Peterseim. Fast time-explicit micro-heterogeneous wave propagation. Proc. Appl. Math. Mech., 18(1):e201800294, 2018.

Abschlussarbeiten

  1. R. Maier. Computational Multiscale Methods in Unstructured Heterogeneous Media. Doctoral Thesis, University of Augsburg, 2020.
  2. R. Maier. Simulation of Elastic Deformation by the Immersed Boundary Method. Master Thesis, University of Bonn, 2017.
  3. R. Maier. Die Space-Time-DG-Methode: Theorie und Numerik für parabolische Gleichungen in einer Dimension. Bachelor Thesis, University of Bonn, 2015. In German.