Roland Maier

Jun.-Prof. Dr. Roland Maier

Junior Professor of Numerical Analysis
Roland Maier
Image: Jürgen Scheere (University of Jena)
Roland Maier, Juniorprof. Dr
Junior Professorship Numerical Analysis
Room 3301
Ernst-Abbe-Platz 2
07743 Jena

Upcoming Events

 

Research Interests

  • Multiscale Methods
  • Numerical Homogenization
  • Semi-explicit methods for coupled PDEs
  • Discretization of (time-dependent) PDEs

 

Teaching

 

Short CV

  • since OCT 2021: Junior Professor of Numerical Analysis, Friedrich Schiller University Jena
  • SEP 2020 - SEP 2021: PostDoc, Chalmers University of Technology and University of Gothenburg, Sweden
  • APR 2020 - AUG 2020: PostDoc, University of Augsburg, Germany
  • APR 2017 - MAR 2020: Doctoral student, University of Augsburg, Germany
  • SEP 2012 - MAR 2017: Bachelor and Master studies, University of Bonn, Germany

 

Awards and Prizes

  • Winner of the ECCOMAS PhD Olympiad 2021
  • Dr.-Klaus-Körper prize of the GAMM 2021
  • Kulturpreis Bayern 2020, dissertation prize
  • Appointed member of the GAMM Juniors (2020-2022)

 

Publications

Submitted Articles

  1. Z. Dong, M. Hauck, and R. Maier. An improved high-order method for elliptic multiscale problemsArXiv Preprint, 2022.
  2. F. Kröpfl, R. Maier, and D. Peterseim. Neural network approximation of coarse-scale surrogates in numerical homogenization. ArXiv Preprint, 2022.
  3. R. Altmann, R. Maier, and B. Unger. Semi-explicit integration of second order for weakly coupled poroelasticity. ArXiv Preprint, 2022.

Refereed Articles

  1. R. Maier, P. Morgenstern, and T. Takacs. Adaptive refinement for unstructured T-splines with linear complexity. Comput. Aided Geom. Design, 96:102117, 2022.
  2. F. Kröpfl, R. Maier, and D. Peterseim. Operator compression with deep neural networks. Adv. Cont. Discr. Mod., 2022, Paper No. 29, 2022.
  3. P. Ljung, R. Maier, and A. Målqvist. A space-time multiscale method for parabolic problems. SIAM Multiscale Model. Simul., 20(2):714-740, 2022.
  4. R. Maier and B. Verfürth. Multiscale scattering in nonlinear Kerr-type media. Math. Comp., 91(336):1655-1685, 2022.
  5. R. Altmann and R. Maier. A decoupling and linearizing discretization for weakly coupled poroelasticity with nonlinear permeability. SIAM J. Sci. Comput., 44(3):B457-B478, 2022.
  6. S. Geevers and R. Maier. Fast mass lumped multiscale wave propagation modelling. Accepted for publication in IMA J. Numer. Anal., 2021.
  7. R. Maier. A high-order approach to elliptic multiscale problems with general unstructured coefficients. SIAM J. Numer. Anal., 59(2):1067-1089, 2021.
  8. R. Altmann, R. Maier, and B. Unger. Semi-explicit discretization schemes for weakly-coupled elliptic-parabolic problems. Math. Comp., 90(329):1089-1118, 2021.
  9. A. Caiazzo, R. Maier, and D. Peterseim. Reconstruction of quasi-local numerical effective models from low-resolution measurements. J. Sci. Comput., 85(1), Article No. 10, 2020.
  10. R. Altmann, E. Chung, R. Maier, D. Peterseim, and S.-M. Pun. Computational multiscale methods for linear heterogeneous poroelasticity. J. Comput. Math., 38(1):41-57, 2020.
  11. P. Hennig, R. Maier, D. Peterseim, D. Schillinger, B. Verfürth, and M. Kästner. A diffuse modeling approach for embedded interfaces in linear elasticity. GAMM-Mitteilungen, 43(1):e202000001, 2020.
  12. S. Fu, R. Altmann, E. Chung, R. Maier, D. Peterseim, and S.-M. Pun. Computational multiscale methods for linear poroelasticity with high contrast. J. Comput. Phys., 395:286-297, 2019.
  13. R. Maier and D. Peterseim. Explicit computational wave propagation in micro-heterogeneous media. BIT Numer. Math., 59(2):443-462, 2019.
  14. C. Paulus, R. Maier, D. Peterseim, and S. Cotin. An immersed boundary method for detail-preserving soft tissue simulation from medical images. In: P. Nielsen, A. Wittek, K. Miller, B. Doyle, G. Joldes, and M. Nash, editors, Computational Biomechanics for Medicine, MICCAI 2017, pp. 55-67. Springer, Cham, 2019.

Articles in Collections

  1. P. Hennig, M. Kästner, R. Maier, P. Morgenstern, and D. Peterseim. Adaptive isogeometric phase-field modeling of weak and strong discontinuities. In: J. Schröder and P. Wriggers, editors, Non-standard Discretisation Methods in Solid Mechanics, volume 98 of Lecture Notes in Applied and Computational Mechanics, pp. 243-282. Springer, Cham, 2022.

Articles in Proceedings

  1. R. Altmann, R. Maier, and B. Unger. A semi-explicit integration scheme for weakly-coupled poroelasticity with nonlinear permeability. Proc. Appl. Math. Mech., 20(1):e202000061, 2021.
  2. A. Caiazzo, R. Maier, and D. Peterseim. Reconstruction of quasi-local numerical effective models from low-resolution measurements. Oberwolfach Reports, 16(3):2149-2152, 2019.
  3. R. Maier and D. Peterseim. Fast time-explicit micro-heterogeneous wave propagation. Proc. Appl. Math. Mech., 18(1):e201800294, 2018.

Theses

  1. R. Maier. Computational Multiscale Methods in Unstructured Heterogeneous Media. Doctoral Thesis, University of Augsburg, 2020.
  2. R. Maier. Simulation of Elastic Deformation by the Immersed Boundary Method. Master Thesis, University of Bonn, 2017.
  3. R. Maier. Die Space-Time-DG-Methode: Theorie und Numerik für parabolische Gleichungen in einer Dimension. Bachelor Thesis, University of Bonn, 2015. In German.